On the losses of dissolved CO(2) during champagne serving.
نویسندگان
چکیده
Pouring champagne into a glass is far from being consequenceless with regard to its dissolved CO(2) concentration. Measurements of losses of dissolved CO(2) during champagne serving were done from a bottled Champagne wine initially holding 11.4 +/- 0.1 g L(-1) of dissolved CO(2). Measurements were done at three champagne temperatures (i.e., 4, 12, and 18 degrees C) and for two different ways of serving (i.e., a champagne-like and a beer-like way of serving). The beer-like way of serving champagne was found to impact its concentration of dissolved CO(2) significantly less. Moreover, the higher the champagne temperature is, the higher its loss of dissolved CO(2) during the pouring process, which finally constitutes the first analytical proof that low temperatures prolong the drink's chill and helps it to retain its effervescence during the pouring process. The diffusion coefficient of CO(2) molecules in champagne and champagne viscosity (both strongly temperature-dependent) are suspected to be the two main parameters responsible for such differences. Besides, a recently developed dynamic-tracking technique using IR thermography was also used in order to visualize the cloud of gaseous CO(2) which flows down from champagne during the pouring process, thus visually confirming the strong influence of champagne temperature on its loss of dissolved CO(2).
منابع مشابه
Monitoring Gaseous CO2 and Ethanol above Champagne Glasses: Flute versus Coupe, and the Role of Temperature
In champagne tasting, gaseous CO(2) and volatile organic compounds progressively invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Simultaneous quantification of gaseous CO(2) and ethanol was monitored through micro-gas chromatography (μGC), all along the first 15 minutes following pouring, depending on whether a volume of 100 mL of c...
متن کاملSurfactant Effect on the Synthesis of B4C-nano TiB Composite by Co-precipitation Method
Titanium diboride is one of the candidate materials for high temperature applications and also for control rod elements in high temperature reactors. This paper presents the experimental data on the composites of B4 C-nano TiB2 that were synthesized successfully by co-precipitation methodat 1523K. Titanium tetraisopropanol, boron carbide, isopropanol and triton x-100were used as the precursor m...
متن کاملA real-time approach toward the chemical quality control of rock material (Case study: Gravel mines in Semnan, Iran
The quality of concrete is highly dependent on the characteristics of its aggregate, such as the size, minerals, and their chemical properties. Even a small amount of impurities, such as hydrated sulfates, chlorine (salt), and acidic pH of the rock material, can adversely affect the quality of the concrete. Thus, many national codes and standards are developed for testing, selecting, and employ...
متن کاملCarbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors.
The influence of solar irradiance and carbon dioxide molar fraction of injected CO(2)-air mixtures on the behavior of outdoor continuous cultures of the microalga Phaeodactylum tricornutum in tubular airlift photobioreactors was analyzed. Instantaneous solar irradiance, pH, dissolved oxygen, temperature, biomass concentration, and the mass flow rates of both the inlet and outlet oxygen and carb...
متن کاملDissolution Rate Enhancement of Clarithromycin Using Ternary Ground Mixtures: Nanocrystal Formation
Clarithromycin (CLA), a broad-spectrum macrolide, is a poorly soluble drug with dissolution rate limited absorption. The aim of this investigation was to prepare CLA nanoparticles from a ternary ground mixture in the presence of sodium lauryl sulfate (SLS) and polyvinyl pyrrolidone (PVP) as co-grinding water-soluble compounds, in order to improve the drug dissolution rate. Different weight rati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of agricultural and food chemistry
دوره 58 15 شماره
صفحات -
تاریخ انتشار 2010